Fast 3D visualization of endogenous brain signals with high-sensitivity laser scanning photothermal microscopy

نویسندگان

  • Jun Miyazaki
  • Tadatsune Iida
  • Shinji Tanaka
  • Akiko Hayashi-Takagi
  • Haruo Kasai
  • Shigeo Okabe
  • Takayoshi Kobayashi
چکیده

A fast, high-sensitivity photothermal microscope was developed by implementing a spatially segmented balanced detection scheme into a laser scanning microscope. We confirmed a 4.9 times improvement in signal-to-noise ratio in the spatially segmented balanced detection compared with that of conventional detection. The system demonstrated simultaneous bi-modal photothermal and confocal fluorescence imaging of transgenic mouse brain tissue with a pixel dwell time of 20 μs. The fluorescence image visualized neurons expressing yellow fluorescence proteins, while the photothermal signal detected endogenous chromophores in the mouse brain, allowing 3D visualization of the distribution of various features such as blood cells and fine structures probably due to lipids. This imaging modality was constructed using compact and cost-effective laser diodes, and will thus be widely useful in the life and medical sciences.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution

Chemical contrast has long been sought for label-free visualization of biomolecules and materials in complex living systems. Although infrared spectroscopic imaging has come a long way in this direction, it is thus far only applicable to dried tissues because of the strong infrared absorption by water. It also suffers from low spatial resolution due to long wavelengths and lacks optical section...

متن کامل

Visualization and analysis of vascular receptors using confocal laser scanning microscopy and fluorescent ligands.

The use of fluorescent ligands to analyze receptor distribution is increasing in popularity. This is due to the ever growing number of fluorescent ligands and the increased sensitivity of microscope-based technologies. Image-analysis methods have advanced to a stage where quantification of fluorescent signals is relatively simple (if used appropriately). In this chapter we describe a method of ...

متن کامل

Non-linearity in photothermal radiometric imaging

Non-linear effects occurring in photothermal microscopes based on principle of photothermal radiometry are studied as a hnction of the laser power and of the modulation frequency. For stainless steel, a second harmonic component of up to 11 % of the hndamental amplitude is found. Phase shifts of up to 20 degrees are observed as a hnction of the modulation frequency. The nonlinearity is mainly d...

متن کامل

Antimicrobial Photothermal Treatment of Pseudomonas Aeruginosa by a Carbon Nanoparticles-Polypyrrole Nanocomposite

Background: Nowadays, it is needed to explore new routes to treat infectious bacterial pathogens due to prevalence of antibiotic-resistant bacteria. Antimicrobial photothermal therapy (PTT), as a new strategy, eradicates pathogenic bacteria.Objective: In this study, the antimicrobial effects of a carbon nanoparticles-polypyrrole nanocomposite (C-PPy) upon laser irradiation were investigat...

متن کامل

Tip-sample distance control using photothermal actuation of a small cantilever for high-speed atomic force microscopy.

We have applied photothermal bending of a cantilever induced by an intensity-modulated infrared laser to control the tip-surface distance in atomic force microscopy. The slow response of the photothermal expansion effect is eliminated by inverse transfer function compensation. By regulating the laser power and regulating the cantilever deflection, the tip-sample distance is controlled; this ena...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016